Skip to content

23 January 2017 | 1 minute read


23 January 2017 | 1 minute read


Latest News

Share this

This is an archived news story which is over 12 months old and may contain out of date information

Supporting international technical collaborations

AWE physicists, Peter Watkeys and Mat Budsworth, working with colleagues from Sandia National Laboratory (SNL) delivered a key experimental campaign to support verification of the UK’s nuclear deterrent. The campaign successfully generated high quality data used to verify (x-ray) radiation transport codes and coupled electromagnetic codes – helping AWE scientists to deliver warheads safely and reliably.

The UK-US team undertook an SGEMP (System Generated Electromagnetic Pulse) campaign on the world’s most powerful pulsed power machine Z at Sandia. The Z machine uses the well known principle of Z-pinch where the fast discharge of capacitors through a target causes its collapse towards its centerline, under the influence of Lorentz forces (current, magnetic field, force). This can lead to high numbers of x-rays being emitted.

SGEMP is a term covering the phenomenon where photon exposure leads to the emission of electrons. The experimental campaign involved Cavity SGEMP and Cable SGEMP. Cavity SGEMP is the specific case where the photo-electron emission is into a cavity. This emission leads to the generation of large evolving magnetic and electric fields. Cable SGEMP is where the photo-electron emission is from a cable, either its core or shield. There is also the effect of the changing electromagnetic fields within a cavity coupling to cables, thereby potentially inducing currents onto cable cores.

AWE Radiation Science Group Leader, David Osborne, said:

“The data generated during this experimental series will enable AWE and SNL to further enhance the development of their understanding of the SGEMP phenomena, and the computational tools used to model this system response.” 

A total of 23 experiments were designed, built and characterised by Peter and Mat.

It is expected that once the data analysis has been completed, further work will be undertaken to examine whether experimental variations align with those predicted by the simulations.

 

Image: The Z-machine during operation. Electrical discharges illuminate the surface of the machine at shot time. (Courtesy of Sandia National Laboratories)

More news

Latest News

AWE physicists celebrated at STEM for Britain 2025

Two aspiring physicists from AWE were recently honoured as finalists at the prestigious STEM for Britain 2025 event, an annual competition which provides a unique platform for early career research scientists, engineers and mathematicians to present ground-breaking work to policymakers, industry leaders and academics. This is the third year AWE has sponsored the event, demonstrating […]

Mark Whiting

Latest News

William Penney Fellow appointed to full professor

We are delighted to announce that Mark Whiting, one of our esteemed William Penney Fellows, has been promoted to full professor at the University of Surrey – a key strategic partner for AWE.

Latest News

Connect – Spring 2025

Welcome to the extended version of Connect As we shared in the paper leaflet we posted to you, we’ve slimmed Connect down and introduced a QR code to bring you to this extended update online. Thanks to this change, we’ve been able to reduce the printing associated with Connect by more than half. If you’ve […]

Search Sitemap